An Averaged Chowla and Elliott Conjecture Along Independent Polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Logarithmically Averaged Chowla and Elliott Conjectures for Two-point Correlations

Let λ denote the Liouville function. The Chowla conjecture, in the two-point correlation case, asserts that ∑ n6x λ(a1n + b1)λ(a2n + b2) = o(x) as x→∞, for any fixed natural numbers a1, a2 and nonnegative integer b1, b2 with a1b2−a2b1 6= 0. In this paper we establish the logarithmically averaged version ∑ x/ω(x)<n6x λ(a1n + b1)λ(a2n + b2) n = o(logω(x)) of the Chowla conjecture as x → ∞, where ...

متن کامل

Recasting the Elliott Conjecture

Let A be a simple, unital, finite, and exact C-algebra which absorbs the Jiang-Su algebra Z tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomorphism, and prove the conjecture in several cases. In these same cases — Z-stab...

متن کامل

Chowla-selberg Formula and Colmez’s Conjecture

In this paper, we reinterpret the Colmez conjecture on Faltings’ height of CM abelian varieties in terms of Hilbert (and Siegel) modular forms. We construct an elliptic modular form involving Faltings’ height of a CM abelian surface and arithmetic intersection numbers, and prove that Colmez’s conjecture for CM abelian surfaces is equivalent to the cuspitality of this modular form.

متن کامل

Verification of the Ankeny – Artin – Chowla Conjecture

Let p be a prime congruent to 1 modulo 4, and let t, u be rational integers such that (t + u √ p )/2 is the fundamental unit of the real quadratic field Q(√p ). The Ankeny-Artin-Chowla conjecture (AAC conjecture) asserts that p will not divide u. This is equivalent to the assertion that p will not divide B(p−1)/2, where Bn denotes the nth Bernoulli number. Although first published in 1952, this...

متن کامل

The Chowla–Selberg Formula and The Colmez Conjecture

In this paper, we reinterpret the Colmez conjecture on the Faltings height of CM abelian varieties in terms of Hilbert (and Siegel) modular forms. We construct an elliptic modular form involving the Faltings height of a CM abelian surface and arithmetic intersection numbers, and prove that the Colmez conjecture for CM abelian surfaces is equivalent to the cuspidality of this modular form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2017

ISSN: 1687-0247,1073-7928

DOI: 10.1093/imrn/rnx002